 ### A and B are two alloys of gold and copper prepared by mixing metals in the ratio 5 : 3 and 5 : 11 respectively. Equal quantities of these alloys are melted to form a third alloys C. The ratio of gold and copper in the alloy C is –

A. 25 : 13 B. 33 : 15 C. 15 : 17 D. 17 : 15 Answer: Option C

### Solution(By Apex Team)

$\begin{array}{l}\text{According to the question,}\\ \left.\begin{array}{l} \text { Alloy } \mathrm{A} \rightarrow 5 \times{ }_{2}: 3 \times_{2}=8 \times_{2} \\ \text { Alloy } \mathrm{B} \rightarrow 5 \quad: 11=16 \end{array}\right]\\ \end{array}$Equal quantity are mixed
$\begin{array}{l}\text{ Alloy }\mathrm{A}\rightarrow10:6=16\\ \text{ Alloy }\mathrm{B}\rightarrow5\quad:11=16\\ \text{ Alloy }\mathrm{C}\rightarrow\mathbf{15}:\mathbf{17}\end{array}$

## Related Questions On Alligation

A. 2 : 5
B. 3 : 5
C. 5 : 3
D. 5 : 2

### An alloy contains zinc, copper and tin in the ratio 2 : 3 : 1 and another contains copper, tin and lead in the ratio 5 : 4 : 3. If equal weights of both alloys are melted together to form a third alloy, then the weight of lead per kg in new alloy will be:

A. $\large\frac{1}{2} \mathrm{~kg}$
B. $\large\frac{1}{8} \mathrm{~kg}$
C. $\large\frac{3}{14} \mathrm{~kg}$
D. $\large\frac{7}{9} \mathrm{~kg}$

A. 81 litres
B. 71 litres
C. 56 litres
D. 50 litres