###
**If the sum of n terms of an AP is 3$\mathbf{n}^{2}$ + 5n then which of its terms is 164 ?**

A. 26th B. 27th C. 28th D. None of these
**Answer: Option B**

## Show Answer

Solution(By Apex Team)

Sum of n terms of an AP = $3 n^{2}+5 n$ Let a be the first term and d be the common difference $\begin{array}{l}\mathrm{S}_{\mathrm{n} }=3\mathrm{n}^2+5\mathrm{n}\\ \mathrm{S}_1=3(1)^2+5\times1=3+5=8\\ \mathrm{~S} _2=3(2)^2+5\times2=12+10=22\\ \therefore\text{ First term }(\mathrm{a})=8\\ \mathrm{a}_2=\mathrm{S }_2-\mathrm{S}_1=22-8=14\\ \mathrm{~d}=\mathrm{a}_2-\mathrm{a}_1=14-8=6\\ \text{ Now } \mathrm{a}_{\mathrm{n}}=\mathrm{a}+(\mathrm{n}-1)\mathrm{d}\\ \Rightarrow164=8+(\mathrm{n}-1) \times6\\ \Rightarrow6\mathrm{n}-6=164-8\\ \Rightarrow6\mathrm{n}=156+6\\ \Rightarrow6\mathrm{n}=162\end{array}$ n = $\Large\frac{162}{6}$ n = 27 168 is 27th term

## Related Questions On Progressions

### How many terms are there in 20, 25, 30 . , , , , , 140?

A. 22B. 25

C. 23

D. 24

### Find the first term of an AP whose 8th and 12th terms are respectively 39 and 59.

A. 5B. 6

C. 4

D. 3

### Find the 15th term of the sequence 20, 15, 10 . , ,

A. -45B. -55

C. -50

D. 0

### The sum of the first 16 terms of an AP whose first term and third term are 5 and 15 respectively is

A. 600B. 765

C. 640

D. 680