
If in an A.P., $\mathbf{S}_{\mathbf{n}}=\mathbf{n}^{2} \mathbf{p}$ and $\mathbf{S}_{\mathbf{m}}=\mathbf{m}^{\mathbf{2}} \mathbf{p}$, where S denotes the sum of r terms of the A.P., then $\mathbf{S}_{\mathbf{p}}$ is equal to
A. $\frac{1}{2} p^{3}$ B. mnp C. $\mathrm{p}^{3}$ D. $(m+n) p^{2}$ Answer: Option CShow Answer
Solution(By Apex Team)
$\begin{array}{l}\mathrm{S}_n=\mathrm{n}^2\mathrm{p},\mathrm{S}_{\mathrm{m}}=\mathrm{m}^2\mathrm{p}\\
\therefore\mathrm{S}_{\mathrm{r}}=\mathrm{r}^2\mathrm{p}\text{ and }\mathrm{S}_{\mathrm{p}}=\mathrm{p}^2\mathrm{p}=\mathrm{p}^3\\
\text{ Hence, }\mathrm{S}_{\mathrm{p}}=\mathrm{p}^3\end{array}$
[oceanwp_library id=”5281″]