If the average of x and $\frac{1}{x}$ (x ≠ 0) is M, then the average of x2 and $\frac{1}{x^{2}}$ is :
A. 1 – M2
B. 1 – 2M2
C. 2M2 – 1
D. 2M2 + 1
Show Answer
Answer-C
Solution-
Solution(By Apex Team)
$\begin{array}{l}\text{ Average of }\left(\Large\frac{x+\frac{1}{x}}{2}\right)=M\\
\text{ Put }x=1\\
\therefore\left(\Large\frac{1+\frac{1}{1}}{2}\right)=M\\
\Rightarrow M=1\\
\therefore\Large\frac{x^2+\frac{1}{x^2}}{2}\\
=\Large\frac{1^2+\frac{1}{1^2}}{2}\\
=1\end{array}$
Now check from the option
Option: (C) ${2M}^2 – 1$ (put M = 1)
= 2 × 1 – 1
= 1 (satisfied)
Alternate Solution:
$\begin{array}{l}\text{According to the question}\\ \Rightarrow\left(\Large\frac{x+\frac{1}{x}}{2}\right)=M\\ \text{ Squaring the both sides }\\ \Rightarrow\left(\Large x^2+\frac{1}{x^2}\right)=(2M)^2-2\\ \Rightarrow\left(\Large x^2+\frac{1}{x^2}\right)=4M^2-2\\ \text{Required average}\\ \begin{array}{l}=\Large\frac{x^2+\frac{1}{x^2}}{2}\\ =\Large\frac{4M^2-2}{2}\\ =2M^2-1\end{array}\end{array}$
Alternate Solution:
$\begin{array}{l}\text{According to the question}\\ \Rightarrow\left(\Large\frac{x+\frac{1}{x}}{2}\right)=M\\ \text{ Squaring the both sides }\\ \Rightarrow\left(\Large x^2+\frac{1}{x^2}\right)=(2M)^2-2\\ \Rightarrow\left(\Large x^2+\frac{1}{x^2}\right)=4M^2-2\\ \text{Required average}\\ \begin{array}{l}=\Large\frac{x^2+\frac{1}{x^2}}{2}\\ =\Large\frac{4M^2-2}{2}\\ =2M^2-1\end{array}\end{array}$