
Let PQ and RS be two poles
PQ = 20 m, RS = 14 m
S and P are joined by a wire
ST || RQ and angle of elevation of P is 30°
Let ST = RQ = x and SP = L
$\begin{array}{l}\text{Now PT}=\text{PQ}-\text{QT}\\
\Rightarrow\text{PQ}-\text{RS}\\
=20-14=6\ \text{m}\\
\text{Now in right}\ \triangle\ \text{PST,}\\
\sin\theta=\frac{\text{ Perpendicular }}{\text{ Hypotenuse }}=\frac{\text{PT}}{\text{SP}}\\
\Rightarrow\sin30^{\circ}=\frac{6}{\text{SP}}\\
\Rightarrow\frac{1}{2}=\frac{6}{\text{SP}}\\
\Rightarrow\text{SP}=2\times6=12\\
\therefore\text{ Length of }\mathrm{AC}=12\mathrm{~m}\end{array}$