
If $\mathbf{S}_{\mathbf{n}}$ denote the sum of the first n terms of an A.P. If $S_{2 n}=3 S_{n}$ , then $\mathbf{S}_{3 \mathrm{n}}: \mathbf{S}_{\mathbf{n}}$ is equal to
A. 4 B. 6 C. 8 D. 10 Answer: Option BShow Answer
Solution(By Apex Team)
$\begin{aligned}S_n&=\text{ Sum of }n\text{ terms of A.P. and }S_{2n}=3S_n\\
S_n&=\frac{n}{2}[2a+(n-1)d]\\
S_{2n}&=\frac{2n}{2}[2a+(2n-1)d]\text{ and }\\
S_{3n}&=\frac{3n}{2}[2a+(3n-1)d]\\
&\text{We know that}\\
&S_{3n}=3\left(S_{2n}-S_n\right)\text{ and }S_{2n}=3S_n\\
&\Rightarrow\frac{S_{3n}}{S_n}=\frac{3\left(S_{2n}-S_n\right)}{S_n}\\
&\Rightarrow\frac{S_{3n}}{S_n}=\frac{3\left(3S_n-S_n\right)}{S_n}\\
&\Rightarrow\frac{S_{3n}}{S_n}=\frac{3\times2S_n}{S_n}\\
&\Rightarrow\frac{S_{3n}}{S_n}=\frac{6}{1}\\
&\therefore S_{3n}\ :\ S_n=6\end{aligned}$
Related Questions On Progressions
How many terms are there in 20, 25, 30 . . . . . . 140?
A. 22B. 25
C. 23
D. 24
Find the first term of an AP whose 8th and 12th terms are respectively 39 and 59.
A. 5B. 6
C. 4
D. 3
Find the 15th term of the sequence 20, 15, 10 . . .
A. -45B. -55
C. -50
D. 0
The sum of the first 16 terms of an AP whose first term and third term are 5 and 15 respectively is
A. 600B. 765
C. 640
D. 680