
Sum of n terms of the series $\sqrt{2}+\sqrt{8}+\sqrt{18}+\sqrt{32}+$…. is?
A. $\Large\frac{n(n+1)}{2}$ B. $2 n(n+1)$ C. $\Large\frac{n(n+1)}{\sqrt{2}}$ D. 1 Answer: Option CShow Answer
Solution(By Apex Team)
The series is given
$\begin{array}{l}
\sqrt{2}+\sqrt{8}+\sqrt{18}+\sqrt{32}+\ldots \ldots \\
\Rightarrow \sqrt{2}+2 \sqrt{2}+3 \sqrt{2}+4 \sqrt{2}+\ldots \ldots \end{array}$
Here a = $\sqrt{2}$ and
$\mathrm{d}=2 \sqrt{2}-\sqrt{2}=\sqrt{2}$
$\begin{aligned}\therefore S_n&=\frac{n}{2}[2a+(n-1)d]\\
&=\frac{n}{2}[2\sqrt{2}+(n-1)\sqrt{2}]\\
&=\frac{n}{2}[2\sqrt{2}+\sqrt{2}n-\sqrt{2}]\\
&=\frac{n}{2}(\sqrt{2}n+\sqrt{2})\\
&=\frac{n\sqrt{2}}{2}(n+1)\\
&=\frac{n(n+1)}{\sqrt{2}}\end{aligned}$
Related Questions On Progressions
How many terms are there in 20, 25, 30 . . . . . . 140?
A. 22B. 25
C. 23
D. 24
Find the first term of an AP whose 8th and 12th terms are respectively 39 and 59.
A. 5B. 6
C. 4
D. 3
Find the 15th term of the sequence 20, 15, 10 . . .
A. -45B. -55
C. -50
D. 0
The sum of the first 16 terms of an AP whose first term and third term are 5 and 15 respectively is
A. 600B. 765
C. 640
D. 680