###
**The 3rd and 6th term of an arithmetic progression are 13 and -5 respectively. What is the 11th term?**

A. -29
B. -41
C. -47
D. -35
**Answer: Option D**

## Show Answer

Solution(By Apex Team)

$\begin{array}{l}\mathrm{T}_3=\mathrm{a}+2\mathrm{~d}=13\ldots\ldots(1)\\
\mathrm{T}_6=\mathrm{a}+5\mathrm{~d}=-5\ldots\ldots(2)\\
\text{ on }\text{ solving }(1)\text{ and }(2)\\
\mathrm{\ d}=-6\&\mathrm{a}=25\\
\mathrm{~T}_{11}=\mathrm{a}+10\mathrm{~d}\\
\quad=25+10(-6)\\
\quad=-35\end{array}$

## Related Questions On Progressions

### How many terms are there in 20, 25, 30 . . . . . . 140?

A. 22B. 25

C. 23

D. 24

### Find the first term of an AP whose 8th and 12th terms are respectively 39 and 59.

A. 5B. 6

C. 4

D. 3

### Find the 15th term of the sequence 20, 15, 10 . . .

A. -45B. -55

C. -50

D. 0

### The sum of the first 16 terms of an AP whose first term and third term are 5 and 15 respectively is

A. 600B. 765

C. 640

D. 680