
The angles of depression of two ships from the top of a light house are 45° and 30° towards east. If the ships are 100 m apart, the height of the light house is
A. $\frac{50}{\sqrt{3}+1} m$ B. $\frac{50}{\sqrt{3}-1} m$ C. $50(\sqrt{3}-1) m$ D. $50(\sqrt{3}+1) m$ Answer: Option CShow Answer
Solution(By Apex Team)
Let AB be the light house C and D are two ships whose angles of depression on A are 30° and 45° respectively
Let height of the tower = h
$\begin{array}{l}\angle\mathrm{ACB}=\angle\mathrm{XAC}=30^{\circ},\\
\angle\mathrm{ADB}=\angle\mathrm{YAD}=45^{\circ}\\
\text{ and }\mathrm{CD}=100\mathrm{~m}\\
\text{ Let }\mathrm{AB}=\mathrm{h}\text{ and }\mathrm{CB}=\mathrm{x}\\
\text{ then }\mathrm{BC}=(100-\mathrm{x})\mathrm{m}\\
\text{ Now in }\Delta\text{ACB},\\
\tan\theta=\frac{\text{AB}}{\text{CB}}\\
\tan30^{\circ}=\frac{\text{h}}{\text{x}}\\
\Rightarrow\frac{1}{\sqrt{3}}=\frac{\text{h}}{\text{x}}\\
\Rightarrow x=\sqrt{3}\text{h}\ldots.(\mathrm{i})\\
\text{Similarily in }\triangle\text{ADB}\\
\tan45^{\circ}=\frac{\text{AB}}{\text{BD}}\\
\Rightarrow1=\frac{\text{h}}{100-\text{x}}\\
\Rightarrow x=100-\text{h}\ldots\text{ (ii) }\\
\text{ From (i) and (ii) }\\
\sqrt{3}\text{h}=100-\text{h}\\
\Rightarrow(\sqrt{3}-1)\text{h}=100\\
\text{h}=\frac{100}{\sqrt{3}+1}\\
\quad=\frac{100(\sqrt{3}-1)}{(\sqrt{3}+1)(\sqrt{3}-1)}\\
\quad=\frac{100(\sqrt{3}-1)}{3-1}\\
\quad=\frac{100(\sqrt{3}-1)}{2}\\
\quad=50(\sqrt{3}-1)\\
\therefore\text{ height of light house }\\
=50(\sqrt{3}-1)\ \text{m}\end{array}$
