
The common difference of an A.P., the sum of whose n terms is $\mathbf{s}_{\mathbf{n}}$, is
A. $\mathrm{S}_{\mathrm{n}}-2 \mathrm{~S}_{\mathrm{n}-1}+\mathrm{S}_{\mathrm{n}-2}$ B. $S_{n}-2 S_{n-1}-S_{n-2}$ C. $\mathrm{S}_{\mathrm{n}}-\mathrm{S}_{\mathrm{n}-2}$ D. $\mathrm{S}_{\mathrm{n}}-\mathrm{S}_{\mathrm{n}-1}$ Answer: Option AShow Answer
Solution(By Apex Team)
$\begin{array}{l}
\text { Sum of } n \text { terms }=S_{n} \\
\therefore a_{n}=S_{n}-S_{n-1} \\
\text { and } a_{n-1}=S_{n-1}-S_{n-2} \\
\therefore \text { Common difference }(d)=a_{n}-a_{n-1} \\
=\left(S_{n}-S_{n-1}\right)-\left(S_{n-1}-S_{n-2}\right) \\
S_{n}-S_{n-1}-S_{n-1}+S_{n-2} \\
=S_{n}-2 S_{n-1}+S_{n-2}
\end{array}$
Related Questions On Progressions
How many terms are there in 20, 25, 30 . . . . . . 140?
A. 22B. 25
C. 23
D. 24
Find the first term of an AP whose 8th and 12th terms are respectively 39 and 59.
A. 5B. 6
C. 4
D. 3
Find the 15th term of the sequence 20, 15, 10 . . .
A. -45B. -55
C. -50
D. 0
The sum of the first 16 terms of an AP whose first term and third term are 5 and 15 respectively is
A. 600B. 765
C. 640
D. 680