ssccglapex

The equation $\cos ^{2} \theta=\frac{(x+y)^{2}}{4 x y}$  is only possible when ?

A. x = -y B. x > y C. x = y D. x < y Answer: Option C
Show Answer

Solution(By Apex Team)

$\begin{array}{l}\cos^2\theta=\frac{(x+y)^2}{4xy}\\ \text{Max value of cos}^2\theta=1\\ \begin{array}{l} \Rightarrow 1=\frac{(x+y)^{2}}{4 x y} \\ \Rightarrow 4 x y=(x+y)^{2} \\ \Rightarrow 4 x y=x^{2}+y^{2}+2 x y \\ \Rightarrow 0=x^{2}+y^{2}-2 x y \\ \Rightarrow 0=(x-y)^{2} \\ \Rightarrow 0=x-y \\ \Rightarrow x=y \end{array}\end{array}$