ssccglapex

The next term of the A.P., $\sqrt{7}, \sqrt{28}, \sqrt{63}, \ldots \ldots$

A. $\sqrt{70}$ B. $\sqrt{87}$ C. $\sqrt{97}$ D. $\sqrt{112}$ Answer: Option D
Show Answer

Solution(By Apex Team)

$\begin{array}{l} \text { A.P. is } \sqrt{7}, \sqrt{28}, \sqrt{63}, \ldots \ldots \\ \Rightarrow \sqrt{7}, \sqrt{4 \times 7}, \sqrt{9 \times 7}, \ldots . \\ \Rightarrow \sqrt{7}, 2 \sqrt{7}, 3 \sqrt{7}, \ldots \ldots \\ \therefore \text { Here } a=\sqrt{7} \text { and } \\ d=2 \sqrt{7}-\sqrt{7}=\sqrt{7} \\ \therefore \text { Next term }=4 \sqrt{7} \\ =\sqrt{(16 \times 7)} \\ =\sqrt{112} \end{array}$

Related Questions On Progressions


How many terms are there in 20, 25, 30 . . . . . . 140?

A. 22
B. 25
C. 23
D. 24
Show Answer

Find the first term of an AP whose 8th and 12th terms are respectively 39 and 59.

A. 5
B. 6
C. 4
D. 3
Show Answer

Find the 15th term of the sequence 20, 15, 10 . . .

A. -45
B. -55
C. -50
D. 0
Show Answer

The sum of the first 16 terms of an AP whose first term and third term are 5 and 15 respectively is

A. 600
B. 765
C. 640
D. 680
Show Answer



More Related Questions On Progressions