 ### Two blends of a commodity costing Rs. 35 and Rs. 40 per kg respectively are mixed in the ratio 2 : 3 by weight. If one-fifth of the mixture is sold at Rs. 46 per kg and the remaining at the rate Rs. 55 per kg, the profit percent is –

A. 50% B. 20% C. 40% D. 30% Answer: Option C

### Solution(By Apex Team)

Let first blend is 2 kg and second blend is 3 kg. $\begin{array}{l}\text{Total cost price }\\ =(35\times2)+(40\times3)\\ =70+120\\ =\text{ Rs. }190\\ \text{Total selling price}\\ =(1 \times 46)+(4 \times 55) \\ =266\left[\frac{1}{5} \text { of } 5 \mathrm{~kg}=1 \mathrm{~kg}\right] \end{array}$ \begin{aligned}&\text{∴ Profit percent}\\ &\Rightarrow \frac{\text { Total profit }}{\text { Total cost price }} \times 100 \\ &\Rightarrow \frac{(266-190)}{190} \times 100 \\ &\Rightarrow \frac{76}{190} \times 100 \\ &\Rightarrow 40 \%\end{aligned}

## Related Questions On Alligation

A. 2 : 5
B. 3 : 5
C. 5 : 3
D. 5 : 2

### An alloy contains zinc, copper and tin in the ratio 2 : 3 : 1 and another contains copper, tin and lead in the ratio 5 : 4 : 3. If equal weights of both alloys are melted together to form a third alloy, then the weight of lead per kg in new alloy will be:

A. $\large\frac{1}{2} \mathrm{~kg}$
B. $\large\frac{1}{8} \mathrm{~kg}$
C. $\large\frac{3}{14} \mathrm{~kg}$
D. $\large\frac{7}{9} \mathrm{~kg}$

A. 81 litres
B. 71 litres
C. 56 litres
D. 50 litres