
Which term of the A.P. 24, 21, 18, ………… is the first negative term?
A. 8th B. 9th C. 10th D. 12th Answer: Option CShow Answer
Solution(By Apex Team)
$a_{n}=a+(n-1) \times d$ where d = -3,
$\text { Let } a_{n}=0$
$\begin{array}{l}
\Rightarrow 0=24+(n-1) \times-3 \\
\Rightarrow 0=24-3 n+3 \\
\Rightarrow 3 n=27 \\
\Rightarrow n=9
\end{array}$
$\Rightarrow 10^{\text {th }}$ term will be negative (-ve)
Related Questions On Progressions
How many terms are there in 20, 25, 30 . . . . . . 140?
A. 22B. 25
C. 23
D. 24
Find the first term of an AP whose 8th and 12th terms are respectively 39 and 59.
A. 5B. 6
C. 4
D. 3
Find the 15th term of the sequence 20, 15, 10 . . .
A. -45B. -55
C. -50
D. 0
The sum of the first 16 terms of an AP whose first term and third term are 5 and 15 respectively is
A. 600B. 765
C. 640
D. 680